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Crash Course

e Evaluation of vulnerabilities of

autonomous driving
o All levels of automation
o Different attacker scenarios
e Realistic threat model
o Differences between adversarial attacks
assumptions and real attackers
e Requirements identification

o Attacks
o Countermeasures
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Outline

2. Automation

3. Assumption Criteria
4. Evaluation
5. Conclusions




SAE Levels

PCII’TICI| qu’rlql Condmonql ngh FuII
Au'romq'rlon Assistance Automation Automation Automation Automation

marchiori@acsw: $ 9/21




SAE Levels

AL
e N\
Par’rlql PCII‘TI('J| Condmonql ngh FuII
Au'romq'rlon Assistance Automation Automation Automation Automation
1\ )
Y

Driver aid

@@

marchiori@acsw:



AI on SAE Levels

Level | Automation | Example Features Al | Driver | Example Tasks
0 - - O ® -
Partial Adaptive Cruise Control (ACC) *® ® Decision making
I Assistance Lane departure warning o o Detection, sensor fusion
ACC o [ ] Decision making
Partial Lane keeping assistance [ [ Detection, sensor fusion
2 Automation Driver monitoring o o Biometrics analysis
Traffic jam assistant o o Traffic pattern recognition
Environment monitoring [ ] O Sensor fusion
Conditional | Traffic jam autopilot o [ ) Autonomous decision making
3 Automation Driver disengagement o ) Autonomous decision making
Autonomous driving o © Lane change, navigation
' Navigation in geofenced areas [ O Path planning
4 ngh, Autonomous decision making o O Traffic management
=ilemanon Safety overrides o [ ) Limited safety-critical tasks
Safety and redundancy ® O Anomaly detection
5 Full . V2X communications o O Resource optimization
Automation - o
Navigation o O Autonomous navigation

@: present, O: not present, O partially present.
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AI and Sensors
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3. Assumption Criteria

4. Evaluation
5. Conclusions
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Related Works

Attack Misclassification Model Model | Direct Physical .
Task Parameters | Output | Input | Implementation
Arnab et al. [3] Semantic Segmentation o ® ® O
Brown et al. [4] Road Sign o ® O o
Cao et al. [5] LiDAR ® ® O ®
Cao et al. [6] LiDAR O ® O ®
Eykholt et al. [7] Road Sign ® ® O o
Kong et al. [12] Road Sign O o O o
Kumar et al. [13] Road Sign O o & O
Li et al. [15] Road Sign O ® ® O
Ma et al. [17] Object Tracking ® ® O o
Papernot et al. [19] Road Sign O o o O
Sharma et al. [22] Misbehavior Detection O [ [ O
Sitawarin et al. [23] Road Sign O ® L] O
Xiang et al. [25] LiDAR ® ® ® O
Zhu et al. [28] LiDAR O ® O ®

@®: required, O: not required.
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Outline

4. Evaluation

5. Conclusions




Threat Model Evaluation (1/2)

e Level 1- Partial Assistance
o Limited functionality (steering or
accelerating)
o Restricted attack surfaces
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Threat Model Evaluation (1/2)

e Level 1- Partial Assistance
o Limited functionality (steering or , '
accelerating) C
o Restricted attack surfaces

e Level 2 - Partial Automation
o Augmented functionality (steering and '
accelerating) +
o Exploiting interaction -L
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Threat Model Evaluation (2/2)

e Level 3 - Conditional Automation

o  Still requires driver attention L~
o Challenges during handover
o More attack surfaces to be exploited o
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Threat Model Evaluation (2/2)

e Level 3 - Conditional Automation

o  Still requires driver attention (&7
o Challenges during handover N\
o More attack surfaces to be exploited o
e Level 4 / Level 5 ) .
o Important to have architecture m
confidential “winly"

o Ethical considerations to be exploited for
malicious purposes
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Criteria

Level EAatize\c(l)(f R?an?lzse Re]sion‘;(zry Adaptability
1 ® ) O O
2 ® () O O
3 ) ® ) ()
4 O ® ® ®
5 O o o &
®: increased safety.
©: unclear.

O: no improvement or decreased safety.
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Outline

5. Conclusions




Takeaways

e Security by obscurity?
o Model knowledge is critical for attack
o Dependent on other factors (e.g., data,
balance)
e Operational Design Domains (ODDs)
o Defining operating conditions
o Safe engage of autonomous components
e Threat modelling

o Crucial to define attacker's assumptions
o Targeted defenses (e.g., adversarial
training)
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Future Work

e Empirical validation
o Testbed (simulated)
o Multiple adversarial challenges
o Feasibility and practicality

e Adaptability of Al systems to

different adversarial strategies

o Diverse level of SAE automation
o Targeted countermeasures
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